کارشناس رسمی دادگستری -رشته راه وساختمان

مقاله پیرامون پیش تنیدگی



سایت مبدا : www.prozhe.com

پسورد فایل : www.prozhe.com


برای دانلود اینجا کلیک کنید


+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

بتن پیش تنیده

مفهوم پیش تنیدگی :

 پیش تنیدگی عبارت است از ایجاد یک تنش ثابت و دائمی ( Prestress ) در یک عضو بتنی به نحو دلخواه و به اندازه لازم ، به طوریکه در اثر این تنش ، مقداری از تنش های ناشی از بارهای مرده و زنده در این عضو خنثی شده و در نتیجه مقاومت باربری آن افزایش پیدا می کند .

هدف اصلی از پیش تنیده کردن یک عضو بتنی ، محدود کردن تنش های کششی و ترک های ناشی از لنگر خمشی ، تحت تاثیر بارهای وارده در آن عضو می باشد .

بتن جسمی است مقاوم در مقابل فشار ، ولیکن مقاومت آن در مقابل کشش بسیار کم می باشد ، بنابراین می توان با وارد کردن فشار به بتن ، کشش ایجاد شده در اثر بار مرده و زنده را در عضو بتنی تقلیل و در نتیجه مقاومت آن را افزایش داد .

لطفا ادامه مطلب را ببینید…

کاربرد بتن پیش تنیده معمولاً در عضوهایی است که تحت تاثیر خمش می باشد مانند : تیرها ، دال ها ، دیوارهای حائل و ستون ها . ولی می توان از بتن پیش تنیده در عضوهایی که تحت تاثیر کشش هستند مانند : لوله ها ، مخازن آب و غیره نیز به نحو مطلوب استفاده نمود .

مزایای بتن پیش تنیده :

۱ ) نداشتن ترکهای دائمی

 یکی از مهمترین خواص سازه های بتن پیش تنیده نداشتن ترک های دائمی می باشد . این موضوع باعث دوام بیشتر این نوع سازه ها نسبت به سازه های بتنی و بتن آرمه می شود . این امر به خصوص در محیط هایی با گازها و زمین های خورنده و همچنین سازه های دریایی بسیار حائز اهمیت می باشد . برتری بتن پیش تنیده نسبت به بتن آرمه در ساختمان تانکرهای آب و مخازن به جهت نداشتن ترک واضح است .

 ۲ ) وزن کمتر سازه

وزن سازه های بتن پیش تنیده به مراتب از وزن سازه های بتن آرمه معادل کمتر است . اولاً چون از مقاومت تمام سطح مقطع بتن استفاده می شود ، میزان بتن لازم کمتر است . ثانیاً چون فولاد مصرفی دارای مقاومت زیادتری است ، معمولاً وزن فولاد لازم بین یک سوم تا یک پنجم وزن فولاد معمولی معادل می گردد .

 ۳ ) نداشتن خیز به سمت پایین

خیز به طرف پایین ( deflection ) تیرهای بتنی پیش تنیده تحت اثر بارهای سرویس معمولاً بسیار کم می باشد . زیرا قبل از وارد آمدن بارهای سرویس ، تحت تاثیر نیروهای پیش تنیدگی مقداری خیز به طرف بالا در تیر به وجود آمده است ، که از شدت خیز به طرف پایین می کاهد .

 ۴ ) تست سازه قبل از بارگذاری

در سازه های بتن پیش تنیده قبل از وارد آمدن بارهای سرویس ، سازه به وسیله نیروی پیش تنیدگی به شدت بارگذاری شده و بتن و فولاد تحت اثر تنش های زیادی قرار می گیرد ، و این خود یک نوع امتحان از نظر مطمئن بودن بتن و فولاد می باشد .

 ۵ ) قابلیت انعطاف پذیری

با تغییر مقداری نیروی پیش تنیدگی می توان سازه را صلب و یا انعطاف پذیر کرد ، بدون اینکه مقاومت نهایی آن تغییری بکند .

 ۶ ) اقتصادی بودن سازه

سازه های بتن پیش تنیده معمولاً برای دهانه های بزرگ و بارهای سنگین اقتصادی تر از سازه های بتن آرمه می باشد .

 ۷ ) انعطاف پذیری در معماری

سازه های بتن پیش تنیده به دلیل حذف بعضی از ستون ها و پایه ها ، امکان اجرای سازه با دهانه های بزرگتر را امکان پذیر ساخته و قابلیت سازه از نظر معماری را افزایش می دهد .

به عنوان مثال سطح هیپربولوئید ( که از دوران هذلولی به وجود می آید ) پیش تنیده برای پوشش سقف ساختمان های صنعتی با دهانه های ۱۰ تا ۱۸ متر ، سازه های فضایی و … از نظر اقتصادی بسیار مقرون به صرفه و از نظر آرشیتکتی بسیار زیبا می باشد .

روشهای پیش تنیدگی:

 ۱- بتن پیش تنیده پیش کشیده (Pre-tensioned concrete ) :

بتن پیش کشیده بتنی است که کابل های پیش تنیدگی آن قبل از ریختن بتن کشیده شده باشند . در بتن پیش کشیده کابل های داخل بتن به بتن چسبیده اند و در واقع کابل بدون غلاف داخل بتن جای می گیرد و بعد از اینکه بتن به مقاومت مشخصه رسید ، کابل ها را از تکیه گاههای دو طرف آزاد کرده و قسمت اضافی بیرون مانده از بتن را قطع می نمایند . تمام نیروی پیش تنیدگی به طور کامل در طولی از کابل به بتن منتقل می شود که این طول انتقال ، بستگی به نوع سطح فولاد ، شکل مقطع و قطر آن دارد . همچنین مقاومت بتن نیز در آن موثر می باشد همانند تولید شمع ها و تیرهای پیش ساخته .

برای جلوگیری از وارد شدن ضربه به بتن در موقع انتقال نیروی پیش تنیدگی ، باید این نیرو به طور آرام و تدریجی به بتن منتقل شود . همچنین قطعه بتنی باید بتواند به راحتی در روی بستر خود بلغزد تا جلوی به وجود آمدن نیروهای داخلی در اثر اصطکاک گرفته شود .

یکی از خاصیت های مهم بتن پیش کشیده این است که می توان چندین عضو یک شکل را در آن واحد بین دو تکیه گاه ریخته و پس از گرفتن بتن با قطع کردن کابل های مشترک ، آنها را از هم جدا کرد . این کار از نظر اقتصادی بسیار مقرون به صرفه می باشد ، زیرا عمل کشیدن کابل ها برای تمام عضوها فقط یکبار انجام می شود همانند تولید قطعات پیش ساخته Hallow-core که مراحل تولید به شکل زیر می باشد .

 

۲- بتن پیش تنیده پس کشیده (Post-tensioned concrete ) :

اگر فولاد پیش تنیدگی را بعد از گرفتن و سفت شدن بتن بکشند ، بتن را اصطلاحاً بتن پس کشیده می نامند . نیروی پیش تنیدگی توسط گیره های ( anchorages ) دو انتهای سازه از کابل به بتن منتقل می گردد . فولاد پیش تنیدگی نباید قبل از کشیدن به بتن چسبیده باشد ، در غیر این صورت امکان کشیدن آن وجود نخواهد داشت . فولادهای پیش تنیدگی را باید در داخل غلاف ها یا مجراهایی که در داخل بتن یا خارج از آن تعبیه شده است ، قرار داد .

کابل های پیش تنیدگی را می توان قبل و یا بعد از بتن ریزی در داخل غلاف ها کار گذاشت . کابل ها به صورت یکی یکی به وسیله دستگاه کابل ردکن ( strand pusher ) و یا به طور دسته ای بوسیله نیروی انسانی در داخل غلاف کار گذاشته می شود .

انواع بتن پیش تنیده پس کشیده

۱) با روش چسبنده ( Bonded ) 

بعد از پایان عملیات کشش کابل ها ، برای جلوگیری از زنگ زدن کابل ها ، دوغاب سیمان به داخل غلاف ها تزریق می شود تا فاصله بین کابل و غلاف را پر کند . در این حالت چون کابل توسط دوغاب به غلاف و در نتیجه به بتن می چسبد ، اصطلاحاً این روش را چسبنده ( Bonded )  می نامند .

  .

    پل صندوقه ای به وسیله دستگاه شاریو
.
.
پل صندوقه ای درجا ریز
.
 
تیر پس کشیده

  .

 سقف ساختمان پس کشیده
.
.

گروت تزریق شده داخل گیره

۲) با روش غیر چسبنده ( Unbonded )

گاهی اوقات به دلائل خاصی از جمله ایجاد انعطاف پذیری بیشتر سازه جهت مقاومت بهتر در مقابل زلزله ، ممکن است دوغاب به داخل غلاف تزریق نکنند . در چنین حالاتی چون هیچ نوع چسبندگی بین کابل و غلاف وجود ندارد ، این روش را غیر چسبنده ( unbonded ) می نامند . در چنین مواقعی برای جلوگیری از زنگ زدن کابل ، داخل غلاف و دور کابل را پر از گیریس می کنند . بعضی از کارخانه های کابل سازی ، کابل هایی تولید می کنند که در داخل لوله های پلاستیک پر از گریس قرار دارد . این نوع کابل های فاقد چسبندگی را می توان مستقیماً در داخل بتن کار گذاشت و بعد از کسب مقاومت از بتن ، کابل ها را کشید که گریس مانع از چسبیدن کابل به غلاف پلاستیکی و در نتیجه به بتن می شود .

در روش غیر چسبنده اگر به دلائلی کابل از داخل گیره ها در برود و یا از هر نقطه پاره شود ، نیروی پیش تنیدگی در آن مقطع از بین می رود .

اصولاً مقاومت نهایی بتن پس کشیده چسبنده خیلی بیشتر از مقاومت نهایی بتن پس کشیده غیر چسبنده مشابه می باشد .

  

سقف ساختمان های پس کشیده به روش Unbonded

سقف ساختمان های پس کشیده به روش

Unbondedمهندسی عمران ایران

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

بتن پیش تنیده


سازه های بتن پیش تنیده به علت حذف بعضی از ستون ها و پایه ها ، امکان اجرای سازه با دهانه های وسیع تر را امکان پذیر ساخته و قابلیت سازه از نظر معماری را بالا می برد. به طور مثال سطح هیپربولوئید بتن پیش تنیده که برای پوشش سقف ساختمان های صنعتی با دهانه های 10 تا 18 متر ، سازه های فضایی و ... به کار می رود از نظر اقتصادی بسیار مقرون به صرفه و از نظر معماری زیبا است.

کاربرد بتن پیش تنیده:
بتن پیش تنیده برای غلبه بر مشکل ترک خوردن در بتن آرمه است به کار می رود. بتن پیش تنیده برای اولین بار درسان فرانسیسکو در سال 1886به ثبت رسید. زمانی که یک قسمتی ساختمانی پیش از حمل بار خدمات، متراکم شود پیش تنیدگی به وجود می آید برای جبران این گونه خسارتها از بتن پیش تنیده استفاده میشود . بتن پیش تنیده به عنوان نسل سوم بتن معرف است. بتن پیش تنیده توسط فولاد مسلح کشیده شده در یک جزء ساختمان به وجود میاید. مراحل بتن ریزی ، پیش تنیدگی می تواند به عنوان پیش تنیدگی بتن و پس تنیدگی بتن تقسیم بندی شود. پیش تنیدگی بتن ، فولاد مسلح را پیش از بتن ریزی تحت کشش قرار می دهد و پیش تنیدگی بتن نیز به پیوند ساخته شده بین فولاد مسلح کشیده می شوده و بتن سفت شده اعمال می شود. در تکنیک پس تنیدگی فولاد مسلح یا تاندون بعد از بتن ریزی و بدست آوردن مقاومت مناسب کشیده می شود . در پس تنیدگی تاندون های فولادی در بتن با مقاومت درست در حفره های محفوظ قرار داده می شود.  در اروپا به دلیل فقر فولاد ، بتن پیش تنیده به عنوان یک ماده سازنده مجاز بعد از جنگ جهانی دوم شناخته شده است. اولین ساختار بتن پیش تنیده در آمریکای شمالی،برای ساخت پل خاطره انگیز ، در سال 1951به پایان رسید. این روزها با توسعه بتن پیش تنیده پل ها با دهانه های طویل ، ساختمان های بلند وبرجها ، . . . ساخته می شود. پلهای ساخته شده بوسیله بتن پیش تنیده در اسپانیا در حال حاضر با دهانه اصلی 440 متر ساخته می شود. برجهایی در کانادا تورنتو که با بتن پیش تنیده ساخته شده به ارتفاع 553 متر است.

انواع بتن پیش تنیده: بتن پیش فشرده. بتن پیش تنیده. در یک تیرچه بتن آرمه کمتر از نیمی از بتن تحت فشار قرار می گیرد و ترک ها در کف تیرچه تحت بارگذاری کامل ایجاد میشود. زمانی که یک تیرچه بتن پیش تنیده می شود، تمامی بتن متراکم می شود. مکان های خارج از مرکز فولاد مسلح در تیرچه ، خمیدگی به وجود می آورد. تیرچه بتن پیش تنیده در اثر بارگذاری هموارتر می شود ، اما باز هم تمامی بتن متراکم نمی باشد و هیچ گونه ترکی بوجود نمی آید. اضافه بر فقدان ترک ها ، عمل ساختاری در تیرچه های بتن پیش تنیده بسیار موثرتر از تیرچه های مسلح معمولی هستند و همچنین از مواد کمتری نیز استفاده می کنند. اولین مرحله در پیش تنیدگی به این صورت هست که رشته های پیش تنیده فولاد در عرض کف قالب بسط داده می شود. در مرحله بعد بتن در اطراف رشته های کشیده شده و ریخته می شود و بتنها به رشته ها می چسبند. زمانی که رشته ها قطع می شوند، بتنها متراکم شده و تیرچه خمیده می شود.

 انواع بتن: بتن پس تنیده بتن پاششی بتن پیش تنیده بتن خود تراز بتن خود تراکم بتن با مقاومت بالا بتن نفوذ ناپذیر در پس تنیدگی طی عمل آوری بتن، بتن مجاز نمی باشد که به رشته های فولاد بچسبد. بعد از عمل آوری بتن ، رشته ها به وسیله یک جک هیدرولیک ، تنیده شده و به انتهای تیرچه متصل می شود.
 مزایای بتن پیش تنیده : نداشتن ترکهای دائمی در بتن پیش تنیده : یکی از مهمترین خاصیت سازه های بتن پیش تنیده نداشتن ترک های دائمی است. این موضوع موجب دوام بیشتر این نوع سازه ها نسبت به سازه های بتنی و بتن آرمه میبا شد . این امر به خصوص در مکانهاهایی با گازها و زمین های خورنده و همچنین سازه های دریایی بسیار مورد اهمیت است. استفاده از بتن پیش تنیده بهتربودن نسبت به بتن آرمه در ساختمان تانکرهای آب و مخازن به منظوره نداشتن ترک است .

وزن کمتر سازه بتن پیش تنیده: وزن سازه های بتن پیش تنیده به مراتب از وزن سازه های بتن آرمه معادل وکمتر است . به این دلیل که از مقاومت تمام سطح مقطع بتن استفاده می شود ، میزان بتن مورده نیاز کمتر است . مورد بعد چون فولاد مصرفی دارای مقاومت بیشتری است ، معمولاً وزن فولاد لازم بین یک سوم تا یک پنجم وزن فولاد معمولی معادل است.

نداشتن خیز به سمت پایین در بتن پیش تنیده:
نداشتن خیز به طرف پایین تیرهای بتنی پیش تنیده تحت تاثیره بارهای معمولاً کم تر است. چون قبل از وارد آمدن بارهای سرویس ، تحت تاثیر نیروهای پیش تنیدگی مقداری خیز به سمت بالا و در تیر نیز به وجود می آید، که از شدت خیز به سمت پایین کم می کند.  آزمایش سازه قبل از بارگذاری در بتن پیش تنیده: در سازه های بتن پیش تنیده قبل از وارد آوردن بارهای سرویس ، سازه به وسیله نیروی پیش تنیده به شدت بارگذاری شده و بتن و فولاد تحت تاثیره قرار می گیرد ، این یک نوع عرضیابی از نظر اطمینان داشتن به بتن و فولاد است.  قابلیت انعطاف پذیری در بتن پیش تنیده: با عوض کردن مقداری نیروی پیش تنیدگی می توان سازه را آسان و یا انعطاف پذیر کرد ، بدون اینکه مقاومت نهایی آن تغییرکند.  اقتصادی بودن سازه بتن پیش تنیده: سازه های بتن پیش تنیده معمولاً برای دهانه های بزرگ و بارهای سنگین بتن آرمه اقتصادی تر استفاده میشود.

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

بتن پیش تنیده


سازه های بتن پیش تنیده به علت حذف بعضی از ستون ها و پایه ها ، امکان اجرای سازه با دهانه های وسیع تر را امکان پذیر ساخته و قابلیت سازه از نظر معماری را بالا می برد. به طور مثال سطح هیپربولوئید بتن پیش تنیده که برای پوشش سقف ساختمان های صنعتی با دهانه های 10 تا 18 متر ، سازه های فضایی و ... به کار می رود از نظر اقتصادی بسیار مقرون به صرفه و از نظر معماری زیبا است.

کاربرد بتن پیش تنیده: بتن پیش تنیده برای غلبه بر مشکل ترک خوردن در بتن آرمه است به کار می رود. بتن پیش تنیده برای اولین بار درسان فرانسیسکو در سال 1886به ثبت رسید. زمانی که یک قسمتی ساختمانی پیش از حمل بار خدمات، متراکم شود پیش تنیدگی به وجود می آید برای جبران این گونه خسارتها از بتن پیش تنیده استفاده میشود . بتن پیش تنیده به عنوان نسل سوم بتن معرف است. بتن پیش تنیده توسط فولاد مسلح کشیده شده در یک جزء ساختمان به وجود میاید. مراحل بتن ریزی ، پیش تنیدگی می تواند به عنوان پیش تنیدگی بتن و پس تنیدگی بتن تقسیم بندی شود. پیش تنیدگی بتن ، فولاد مسلح را پیش از بتن ریزی تحت کشش قرار می دهد و پیش تنیدگی بتن نیز به پیوند ساخته شده بین فولاد مسلح کشیده می شوده و بتن سفت شده اعمال می شود. در تکنیک پس تنیدگی فولاد مسلح یا تاندون بعد از بتن ریزی و بدست آوردن مقاومت مناسب کشیده می شود . در پس تنیدگی تاندون های فولادی در بتن با مقاومت درست در حفره های محفوظ قرار داده می شود.

 در اروپا به دلیل فقر فولاد ، بتن پیش تنیده به عنوان یک ماده سازنده مجاز بعد از جنگ جهانی دوم شناخته شده است. اولین ساختار بتن پیش تنیده در آمریکای شمالی،برای ساخت پل خاطره انگیز ، در سال 1951به پایان رسید. این روزها با توسعه بتن پیش تنیده پل ها با دهانه های طویل ، ساختمان های بلند وبرجها ، . . . ساخته می شود. پلهای ساخته شده بوسیله بتن پیش تنیده در اسپانیا در حال حاضر با دهانه اصلی 440 متر ساخته می شود. برجهایی در کانادا تورنتو که با بتن پیش تنیده ساخته شده به ارتفاع 553 متر است.

انواع بتن پیش تنیده: بتن پیش فشرده. بتن پیش تنیده. در یک تیرچه بتن آرمه کمتر از نیمی از بتن تحت فشار قرار می گیرد و ترک ها در کف تیرچه تحت بارگذاری کامل ایجاد میشود. زمانی که یک تیرچه بتن پیش تنیده می شود، تمامی بتن متراکم می شود. مکان های خارج از مرکز فولاد مسلح در تیرچه ، خمیدگی به وجود می آورد. تیرچه بتن پیش تنیده در اثر بارگذاری هموارتر می شود ، اما باز هم تمامی بتن متراکم نمی باشد و هیچ گونه ترکی بوجود نمی آید. اضافه بر فقدان ترک ها ، عمل ساختاری در تیرچه های بتن پیش تنیده بسیار موثرتر از تیرچه های مسلح معمولی هستند و همچنین از مواد کمتری نیز استفاده می کنند. اولین مرحله در پیش تنیدگی به این صورت هست که رشته های پیش تنیده فولاد در عرض کف قالب بسط داده می شود. در مرحله بعد بتن در اطراف رشته های کشیده شده و ریخته می شود و بتنها به رشته ها می چسبند. زمانی که رشته ها قطع می شوند، بتنها متراکم شده و تیرچه خمیده می شود.

 انواع بتن: بتن پس تنیده بتن پاششی بتن پیش تنیده بتن خود تراز بتن خود تراکم بتن با مقاومت بالا بتن نفوذ ناپذیر در پس تنیدگی طی عمل آوری بتن، بتن مجاز نمی باشد که به رشته های فولاد بچسبد. بعد از عمل آوری بتن ، رشته ها به وسیله یک جک هیدرولیک ، تنیده شده و به انتهای تیرچه متصل می شود.

 مزایای بتن پیش تنیده : نداشتن ترکهای دائمی در بتن پیش تنیده : یکی از مهمترین خاصیت سازه های بتن پیش تنیده نداشتن ترک های دائمی است. این موضوع موجب دوام بیشتر این نوع سازه ها نسبت به سازه های بتنی و بتن آرمه میبا شد . این امر به خصوص در مکانهاهایی با گازها و زمین های خورنده و همچنین سازه های دریایی بسیار مورد اهمیت است. استفاده از بتن پیش تنیده بهتربودن نسبت به بتن آرمه در ساختمان تانکرهای آب و مخازن به منظوره نداشتن ترک است .

وزن کمتر سازه بتن پیش تنیده: وزن سازه های بتن پیش تنیده به مراتب از وزن سازه های بتن آرمه معادل وکمتر است . به این دلیل که از مقاومت تمام سطح مقطع بتن استفاده می شود ، میزان بتن مورده نیاز کمتر است . مورد بعد چون فولاد مصرفی دارای مقاومت بیشتری است ، معمولاً وزن فولاد لازم بین یک سوم تا یک پنجم وزن فولاد معمولی معادل است.

نداشتن خیز به سمت پایین در بتن پیش تنیده: نداشتن خیز به طرف پایین تیرهای بتنی پیش تنیده تحت تاثیره بارهای معمولاً کم تر است. چون قبل از وارد آمدن بارهای سرویس ، تحت تاثیر نیروهای پیش تنیدگی مقداری خیز به سمت بالا و در تیر نیز به وجود می آید، که از شدت خیز به سمت پایین کم می کند.

 آزمایش سازه قبل از بارگذاری در بتن پیش تنیده: در سازه های بتن پیش تنیده قبل از وارد آوردن بارهای سرویس ، سازه به وسیله نیروی پیش تنیده به شدت بارگذاری شده و بتن و فولاد تحت تاثیره قرار می گیرد ، این یک نوع عرضیابی از نظر اطمینان داشتن به بتن و فولاد است.

 قابلیت انعطاف پذیری در بتن پیش تنیده: با عوض کردن مقداری نیروی پیش تنیدگی می توان سازه را آسان و یا انعطاف پذیر کرد ، بدون اینکه مقاومت نهایی آن تغییرکند.

 اقتصادی بودن سازه بتن پیش تنیده: سازه های بتن پیش تنیده معمولاً برای دهانه های بزرگ و بارهای سنگین بتن آرمه اقتصادی تر استفاده میشود.
+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

سقف های پس کشیده( ccl ) و پیش تنیده

1- مقدمه:

  در سال هاي اخير استفاده از سقفهاي پس كشيده در ساختمانها رشد و پيشرفت داشته است. بيشترين كاربرد آن در كشور آمريكا بوده و در كاليفرنيا اين سيستم اولين انتخاب براي سقفهاي بتني است. سقفهاي پس كشيده همچنين در استراليا، هنگ كنگ، سنگاپور و اروپا نيز استفاده ميشود و در انگلستان نيز به سرعت در حال افزايش است.

2- معرفي سيستم پيش تنيده:

 اگر چه سيستمهاي پيش تنيدگي نيازمند دانش و نظرات فني خاصي براي ساخت و نصب كردن مي با شد ولي توضيح دادن مفهوم آن آسان است.در بشكه هاي چوبي قديمي كشش ايجاد شده در حلقه هاي فلزي بطور مؤثري قطعات چوبي را به يكديگر مي فشارد تا مقاومت و پايداري آنرا افزايش دهد. (شكل 1)

(شكل 1)- بشكه با حلقه هاي فلزي

  از ديدگاه كلي پيش تنيدگي به معناي ايجاد تنش هاي دائمي مخالف با تنش هايي مي باشد كه در اثر بارهاي خدمت در سازه ايجاد خواهند شد. همانطور كه ميدانيم بتن در فشار بسيار قوي ولي در كشش ضعيف عمل مي نمايد بطوريكه يك تنش كششي اندك مي تواند باعث ترك خوردگي مقطع بتني شود. عموما از ميلگردهاي فولادي در بتن بعنوان آرماتوركششي استفاده مي شود تا مقدار ترك خوردگي را محدود نمايد. براي روشن تر شدن موضوع يك تير بتني را مورد بررسي قرار مي دهيم:

 در يك تير بتني معمولي (غير پيش تنيده) كه تحت بار ثقلي قرار دارد به واسطه خمش ايجاد شده در آن، پائين مقطع (زير تار خنثي) به كشش افتاده و در بالا فشار ايجاد مي گردد. لذا از آنجا كه بتن در كشش ضعيف مي باشد پس از ترك خوردن بتن در مقابل تنش هاي كششي، فولاد موجود در زير تار خنثي به كشش مي افتد .اين امر ممكن است حتي تحت اثر وزن خود تير نيز اتفاق بيافتد.

 در سيستم پيش تنيده بجاي آرماتورهاي معمولي از يكسري كابل (تاندون) هاي با مقاومت كششي بالا استفاده مي شود.كه اين كابل ها تحت كشش زيادي قرار گرفته و در دو انتهاي تير توسط گره هاي مخصوص تثبيت مي گردند. بدين ترتيب كابل هاي پيش كشيده پس از رها شدن از كشش تمايل به جمع شدن و رسيدن به حالت اوليه داشته و لذا يك نيروي فشاري زيادي در قسمت زيرين تار خنثي در بتن ايجاد ميگردد كه به تبع اين نيرو در مقابل نيروي كششي كه بواسطه بارهاي ثقلي در بتن ايجاد مي گردد قرار مي گيرد. بنا براين اين كابل ها مقداري از نيروهاي ناشي از بارهاي ثقلي را خنثي نموده و مقطع قابليت پذيرش بارهاي بيشتري را خواهد داشت.

بر حسب نوع اعمال نيرو پيش تنيدگي دو نوع سيستم پيش تنيده خواهيم داشت :

الف) پيش كشيده  ب)  پس كشيده

 الف) سيستم پيش كشيده : در اين سيستم در مرحله اول فولادها تحت كشش قرارگرفته ودر دو انتهاي عضو توسط گيره هاي مخصوص كاملا گير داده مي شوند. در مرحله دوم عضو مورد نظر بتن ريزي مي شود و سپس بتن عمل آورده مي شود و به مقاومت كافي مي رسد و در مرحله سوم فولاد هاي پيش تنيدگي در دو انتهاي تير، بريده شده و نيروي پيش تنيدگي بصورت يك نيروي فشاري بر عضو اعمال ميشود. فولاد هاي پيش تنيدگي به دو صورت فولاد با مسير مستقيم يا فولاد با مسير شكسته مي باشد. اجراي مسير با منحني پيوسته براي كارهاي پيش كشيده تقريبا امكان پذير نيست.

 ب) سيستم پس كشيده : در اين سيستم در مسير عبور فولادهاي پيش تنيدگي ، غلافي تو خالي در بتن تعبيه مي گردد سپس كابل ها از درون غلاف ها عبور داده شده بطوريكه دو سر آن از غلاف بيرون بوده و عمليات بتن ريزي انجام مي شود وغالبا قبل از بتن ريزي دو ورق صفحه فشار جايگذاري مي شود. بعد از اينكه بتن به مقاومت مورد نظر رسيد فولادهاي پيش تنيدگي توسط جك هايي كه به صفحه فشار تكيه مي نمايند كشيده مي شوند.


3-  مزايا وامتيازات سقف هاي پس كشيده :

1- كاهش ارتفاع سيستم سقف سازه: وجود دال پس كشيده در سقف ها باعث كوتاه شدن و يا حذف تيرها شده و در نتيجه سبب كاهش ارتفاع طبقه و پيروي آن كاهش كل ارتفاع سازه مي گردد.

2- افزايش طول دهانه ها: امكان فضاهاي بدون ستون و انعطاف بيشتري در معماري فراهم مي كند.

3- كاهش وزن سقف و مصالح مصرفي و سازه سبكتر: ابعاد ستون ها ، ديوارها و فونداسيون در   اين سيستم كاهش يافته و سازه سبكتري خواهيم داشت.

 4- انعطاف پذيري در مسير عبور تاسيسات : حذف تيرها يا تيرچه ها در سقف هاي پس كشيده انعطاف پذيري را جهت عبور تاسيسات بيشتر مي نمايد.

5- قابليت ساخت بهتر: مصالح مصرفي كمتر، جزئيات ساده تر، نبودن تيرها و در نتيجه قالب بندي وآرماتور بندي آن ها،تراكم كمتر آرماتورها همگي قابليت ساخت بهتر را ايجاد مي كنند.

6- كنترل ترك ها وكاهش تغيير شكل ها : به دليل اثربالانس كابل ها (تاندون ها) سقف پس كشيده تحت تاثير وزن خود  تغيير شكل نداده وترك خوردگي وتغيير شكل تقريبا به طور اختصاصي بواسطه بار زنده ايجاد مي شود.

7- سرعت بالاي ساخت : به لحاظ اينكه در دال هاي پس كشيده معمولا تيرهاي مياني حذف و يك دال تخت گسترده داريم لذا يكباره مي توان سطوح گسترده اي را قالب بندي ، اجرا و قالب برداري نمود.


4-  دامنه كاربرد سقف هاي پس كشيده :

1- پاركينگ هاي طبقاتي : از آنجا كه در سيستم دال پس كشيده فاصله ستون ها بطور قابل ملاحظه اي(دهانه ها ي12 متري) افزايش مي يابد لذا فضاي باز و مفيدي را جهت پارك و جابجايي اتومبيل ها ايجاد مي نمايد. همچنين با توجه به اينكه در اكثر پاركينگ هاي طبقاتي سقف ها به صورت نمايان (Expose) و بدون سقف كاذب اجرا مي گردند قابليت كاهش نفوذ پذيري و مقاوم شدن بتن در مقابل تهاجم هاي شيمياي در دال هاي پس كشيده نيز ميتواند عامل مهمي در انتخاب اين سيستم براي پاركينگ هاي طبقاتي باشد.

2- برج ها وساختمان هاي مرتفع : با توجه به اينكه استفاده از دال هاي پس كشيده در سازه باعث كاهش ارتفاع طبقه مي شود ، لذا در يك ارتفاع ثابت مي توان تعداد طبقات بيشتري را ايجاد نمود.

3- ساختمان هاي تجاري و بيمارستان ها : مزايايي از قبيل فاصله زياد ستون ها ، سرعت اجرا وكاهش وزن سازه در سيستم دال هاي پس كشيده باعث مي شوند تا اين نوع سيستم گزينه مناسبي براي ساختمان هاي تجاري و بيمارستان ها و... باشد.

4- پل ها : نياز به اجراي دهانه هاي بزرگ در پل ها ، جلوگيري از لرزش ، ترك خوردگي و نفوذ پذيري بتن و همچنين سرعت مناسب اجرا در سيستم هاي پس كشيده از جمله عواملي است كه باعث شده اين سيستم از مرسوم ترين روشها در ساخت پل ها باشد .

5- انبوه سازي هاي مسكوني : از آنجا كه در اين نوع مجتمع ها درهرطبقه چندين واحد مسكوني در نظر گرفته شده و طراحي مي گردد لذا فاصله زياد ستون ها شرايط بسيار مناسبي جهت معماري واحدها مهيا مي نمايد بطوريكه ميتوان در بيشتر موارد هر واحد را بدون قرار گيري ستون در داخل آن طراحي نمود.                                                          

5-  روشهاي اجراي سيستم پس كشيده :

 در زمينه اجراي سيستم پس كشيده دو روش جهت ساخت بكار مي رود :

 1- سيستم چسبيده  

Bonded - 2- سيستم غير چسبيده   Unbonded

1- سيستم چسبيده : با اين روش كابل هاي پس كشيده از ميان غلاف هاي تخت ممتد وكوچك از جنس گالوانيزه عبور مي كند كه داخل غلاف ها پس از بتن ريزي وكشيده شدن كابل ها با دوغاب پر مي شود.

2- سيستم غير چسبيده : در اين سيستم كابل با دوغاب تزريق نمي شود و مي تواند آزادانه و مستقل از بتن حركت كند. اغلب كابل ها در يك غلاف محافظ با گريس پوشانده شده اند . پس از بتن ريزي وكسب مقاومت فشاري مشخص كابل بسادگي و با استفاده از يك جك دستي كوچك كشيده مي شود كه اين عمل عمليات پس كشيدگي را تكميل ميكند.

6-  شرح تصويري وسايل پيش تنيدگي :

به منظور آشنايي بهتر ودرك صحيح از سيستم پس كشيده يكسري تصاوير از وسايل پيش تنيدگي در اين قسمت نشان داده شده است.

 كابلهاي پيش تنيدگي                               غلاف فلزي                        ادوات پس كشيدگي

 7- نتيجه گيري :

 امتيازات:

1-           استفاده از دهانه هاي بلند

2-           بهره گيري از سطح تخت و صاف در زير سقف

3-           انعطاف طرح

4-           استفاده از دال هاي نازكتر

5-           كنترل تغيير شكل وترك

6-           كاهش ارتفاع طبقات

7-           سازه سبكتر

8-           ساخت سريع

9-           صرفه جويي در هزينه هاي ساخت

10-      انعطاف پذيري در آينده

 یاسین حلاجان  Yasin Halajan

منبع : ایران سازه

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

سقف های پیش تنیده

 
1- مقدمه:

در سال هاي اخير استفاده از سقفهاي پس كشيده در ساختمانها رشد و پيشرفت داشته است. بيشترين كاربرد آن در كشور آمريكا بوده و در كاليفرنيا اين سيستم اولين انتخاب براي سقفهاي بتني است. سقفهاي پس كشيده همچنين در استراليا، هنگ كنگ، سنگاپور و اروپا نيز استفاده ميشود و در انگلستان نيز به سرعت در حال افزايش است.
2- معرفي سيستم پيش تنيده:
اگر چه سيستمهاي پيش تنيدگي نيازمند دانش و نظرات فني خاصي براي ساخت و نصب كردن مي با شد ولي توضيح دادن مفهوم آن آسان است.در بشكه هاي چوبي قديمي كشش ايجاد شده در حلقه هاي فلزي بطور مؤثري قطعات چوبي را به يكديگر مي فشارد تا مقاومت و پايداري آنرا افزايش دهد. (شكل 1)

(شكل 1)- بشكه با حلقه هاي فلزي

از ديدگاه كلي پيش تنيدگي به معناي ايجاد تنش هاي دائمي مخالف با تنش هايي مي باشد كه در اثر بارهاي خدمت در سازه ايجاد خواهند شد. همانطور كه ميدانيم بتن در فشار بسيار قوي ولي در كشش ضعيف عمل مي نمايد بطوريكه يك تنش كششي اندك مي تواند باعث ترك خوردگي مقطع بتني شود. عموما از ميلگردهاي فولادي در بتن بعنوان آرماتوركششي استفاده مي شود تا مقدار ترك خوردگي را محدود نمايد. براي روشن تر شدن موضوع يك تير بتني را مورد بررسي قرار مي دهيم:

در يك تير بتني معمولي (غير پيش تنيده) كه تحت بار ثقلي قرار دارد به واسطه خمش ايجاد شده در آن، پائين مقطع (زير تار خنثي) به كشش افتاده و در بالا فشار ايجاد مي گردد. لذا از آنجا كه بتن در كشش ضعيف مي باشد پس از ترك خوردن بتن در مقابل تنش هاي كششي، فولاد موجود در زير تار خنثي به كشش مي افتد .اين امر ممكن است حتي تحت اثر وزن خود تير نيز اتفاق بيافتد.

در سيستم پيش تنيده بجاي آرماتورهاي معمولي از يكسري كابل (تاندون) هاي با مقاومت كششي بالا استفاده مي شود.كه اين كابل ها تحت كشش زيادي قرار گرفته و در دو انتهاي تير توسط گره هاي مخصوص تثبيت مي گردند. بدين ترتيب كابل هاي پيش كشيده پس از رها شدن از كشش تمايل به جمع شدن و رسيدن به حالت اوليه داشته و لذا يك نيروي فشاري زيادي در قسمت زيرين تار خنثي در بتن ايجاد ميگردد كه به تبع اين نيرو در مقابل نيروي كششي كه بواسطه بارهاي ثقلي در بتن ايجاد مي گردد قرار مي گيرد. بنا براين اين كابل ها مقداري از نيروهاي ناشي از بارهاي ثقلي را خنثي نموده و مقطع قابليت پذيرش بارهاي بيشتري را خواهد داشت.


بر حسب نوع اعمال نيرو پيش تنيدگي دو نوع سيستم پيش تنيده خواهيم داشت : الف) پيش كشيده ب) پس كشيده

الف) سيستم پيش كشيده : در اين سيستم در مرحله اول فولادها تحت كشش قرارگرفته ودر دو انتهاي عضو توسط گيره هاي مخصوص كاملا گير داده مي شوند. در مرحله دوم عضو مورد نظر بتن ريزي مي شود و سپس بتن عمل آورده مي شود و به مقاومت كافي مي رسد و در مرحله سوم فولاد هاي پيش تنيدگي در دو انتهاي تير، بريده شده و نيروي پيش تنيدگي بصورت يك نيروي فشاري بر عضو اعمال ميشود. فولاد هاي پيش تنيدگي به دو صورت فولاد با مسير مستقيم يا فولاد با مسير شكسته مي باشد. اجراي مسير با منحني پيوسته براي كارهاي پيش كشيده تقريبا امكان پذير نيست.

ب) سيستم پس كشيده : در اين سيستم در مسير عبور فولادهاي پيش تنيدگي ، غلافي تو خالي در بتن تعبيه مي گردد سپس كابل ها از درون غلاف ها عبور داده شده بطوريكه دو سر آن از غلاف بيرون بوده و عمليات بتن ريزي انجام مي شود وغالبا قبل از بتن ريزي دو ورق صفحه فشار جايگذاري مي شود. بعد از اينكه بتن به مقاومت مورد نظر رسيد فولادهاي پيش تنيدگي توسط جك هايي كه به صفحه فشار تكيه مي نمايند كشيده مي شوند.


3- مزايا وامتيازات سقف هاي پس كشيده :

1- كاهش ارتفاع سيستم سقف سازه: وجود دال پس كشيده در سقف ها باعث كوتاه شدن و يا حذف تيرها شده و در نتيجه سبب كاهش ارتفاع طبقه و پيروي آن كاهش كل ارتفاع سازه مي گردد.

2- افزايش طول دهانه ها: امكان فضاهاي بدون ستون و انعطاف بيشتري در معماري فراهم مي كند.

3- كاهش وزن سقف و مصالح مصرفي و سازه سبكتر: ابعاد ستون ها ، ديوارها و فونداسيون در اين سيستم كاهش يافته و سازه سبكتري خواهيم داشت.

4- انعطاف پذيري در مسير عبور تاسيسات : حذف تيرها يا تيرچه ها در سقف هاي پس كشيده انعطاف پذيري را جهت عبور تاسيسات بيشتر مي نمايد.

5- قابليت ساخت بهتر: مصالح مصرفي كمتر، جزئيات ساده تر، نبودن تيرها و در نتيجه قالب بندي وآرماتور بندي آن ها،تراكم كمتر آرماتورها همگي قابليت ساخت بهتر را ايجاد مي كنند.

6- كنترل ترك ها وكاهش تغيير شكل ها : به دليل اثربالانس كابل ها (تاندون ها) سقف پس كشيده تحت تاثير وزن خود تغيير شكل نداده وترك خوردگي وتغيير شكل تقريبا به طور اختصاصي بواسطه بار زنده ايجاد مي شود.

7- سرعت بالاي ساخت : به لحاظ اينكه در دال هاي پس كشيده معمولا تيرهاي مياني حذف و يك دال تخت گسترده داريم لذا يكباره مي توان سطوح گسترده اي را قالب بندي ، اجرا و قالب برداري نمود.

4- دامنه كاربرد سقف هاي پس كشيده :

1- پاركينگ هاي طبقاتي : از آنجا كه در سيستم دال پس كشيده فاصله ستون ها بطور قابل ملاحظه اي(دهانه ها ي12 متري) افزايش مي يابد لذا فضاي باز و مفيدي را جهت پارك و جابجايي اتومبيل ها ايجاد مي نمايد. همچنين با توجه به اينكه در اكثر پاركينگ هاي طبقاتي سقف ها به صورت نمايان (Expose) و بدون سقف كاذب اجرا مي گردند قابليت كاهش نفوذ پذيري و مقاوم شدن بتن در مقابل تهاجم هاي شيمياي در دال هاي پس كشيده نيز ميتواند عامل مهمي در انتخاب اين سيستم براي پاركينگ هاي طبقاتي باشد.

2- برج ها وساختمان هاي مرتفع : با توجه به اينكه استفاده از دال هاي پس كشيده در سازه باعث كاهش ارتفاع طبقه مي شود ، لذا در يك ارتفاع ثابت مي توان تعداد طبقات بيشتري را ايجاد نمود.

3- ساختمان هاي تجاري و بيمارستان ها : مزايايي از قبيل فاصله زياد ستون ها ، سرعت اجرا وكاهش وزن سازه در سيستم دال هاي پس كشيده باعث مي شوند تا اين نوع سيستم گزينه مناسبي براي ساختمان هاي تجاري و بيمارستان ها و... باشد.

4- پل ها : نياز به اجراي دهانه هاي بزرگ در پل ها ، جلوگيري از لرزش ، ترك خوردگي و نفوذ پذيري بتن و همچنين سرعت مناسب اجرا در سيستم هاي پس كشيده از جمله عواملي است كه باعث شده اين سيستم از مرسوم ترين روشها در ساخت پل ها باشد .

5- انبوه سازي هاي مسكوني : از آنجا كه در اين نوع مجتمع ها درهرطبقه چندين واحد مسكوني در نظر گرفته شده و طراحي مي گردد لذا فاصله زياد ستون ها شرايط بسيار مناسبي جهت معماري واحدها مهيا مي نمايد بطوريكه ميتوان در بيشتر موارد هر واحد را بدون قرار گيري ستون در داخل آن طراحي نمود.

5- روشهاي اجراي سيستم پس كشيده :

در زمينه اجراي سيستم پس كشيده دو روش جهت ساخت بكار مي رود :

1- سيستم چسبيده Bonded 2- سيستم غير چسبيده Unbonded

1- سيستم چسبيده : با اين روش كابل هاي پس كشيده از ميان غلاف هاي تخت ممتد وكوچك از جنس گالوانيزه عبور مي كند كه داخل غلاف ها پس از بتن ريزي وكشيده شدن كابل ها با دوغاب پر مي شود.

2- سيستم غير چسبيده : در اين سيستم كابل با دوغاب تزريق نمي شود و مي تواند آزادانه و مستقل از بتن حركت كند. اغلب كابل ها در يك غلاف محافظ با گريس پوشانده شده اند . پس از بتن ريزي وكسب مقاومت فشاري مشخص كابل بسادگي و با استفاده از يك جك دستي كوچك كشيده مي شود كه اين عمل عمليات پس كشيدگي را تكميل ميكند.

6- شرح تصويري وسايل پيش تنيدگي :

به منظور آشنايي بهتر ودرك صحيح از سيستم پس كشيده يكسري تصاوير از وسايل پيش تنيدگي در اين قسمت نشان داده شده است.

7- نتيجه گيري :

امتيازات:

1- استفاده از دهانه هاي بلند

2- بهره گيري از سطح تخت و صاف در زير سقف

3- انعطاف طرح

4- استفاده از دال هاي نازكتر

5- كنترل تغيير شكل وترك

6- كاهش ارتفاع طبقات

7- سازه سبكتر

8- ساخت سريع

9- صرفه جويي در هزينه هاي ساخت

10- انعطاف پذيري در آينده

مفهوم پیش تنیدگی

در سازه های بتن مسلح معمولی، اعضای بتنی ازقبیل تیرو ستون و دال سقف شامل بتن و آرماتور هستند که در این اعضا، بخشی از بتن تحت نیروهای فشاری و بخش دیگر آن به همراه آرماتور ، تحت نیروهای کششی قرار میگیرند. در ناحیه فشاری، بتن به خوبی نیروها را تحمل می کند اما در ناحیه کششی ، ترک می خورد و عملاً کارایی خود را از دست می دهد و آرماتور به تنهایی نیروهای کششی را تحمل می نماید. در این حالت، بتن تنها نگهدارنده آرماتور است و بدون باربری به وزن سازه می افزاید.
پیش تنیدگی عبارتست از اعمال تنش فشاری دائمی قبل از اعمال بارهای بهره برداری به منظور کاهش و یا از بین بردن تنشهای کششی. تنش فشاری دائمی با قرار دادن کابل فولادی در قطعه بتنی، کشیدن و مهار کردن آن در دو طرف عضو به مقطع بتنی اعمال می شود.
در طول اعضای خمشی هم تار تحتانی در کشش قرار می گیرد (وسط دهانه) و هم تار فوقانی (روی تکیه گاه). در مقاطع پیش تنیده با جابجا کردن موقعیت کابل، مقدار و توزیع تنش فشاری قابل کنترل است.
در سازه های پیش تنیده، اعضای بتنی شامل بتن، آرماتور و کابل های پیش تنیدگی می باشند. در این اعضا ، آرماتورها برای جلوگیری از ایجاد ترکهای بزرگ در بتن (که عملا موجب شکست می شوند) و تامین الزامات حداقل مقرراتی که آیین نامه بتن ایران برای سازه های بتنی مقرر داشته است استفاده می شوند و معمولاً بعنوان قطعات باربر مورد استفاده قرار نمی گیرند.
بتن در این اعضا همچنان نقش باربری فشاری را عهده دار است با این تفاوت که بطور کامل (در کل ناحیه) تحت فشار قرار می گیرد و عملا تمام مصالح بتن بدون ایجاد ترک ، نیروهای فشاری را تحمل می کند.
دلیل این امر، استفاده از کابلهای پیش تنیدگی می باشد که کابلهای پیش تنیدگی وظیفه بوجود آمدن چنین وضعیتی را عهده دار هستند. این کابلهای با ایجاد نیروی فشاری اولیه(در زمان ساخت و قبل از بهره برداری از سازه) در ناحیه کشتی بتن، موجب می شوند.
بعد از آنکه بارهای مرده (از قبیل کف سازی) و زنده (از قبیل بار وسایل و کاربران) در زمان بهره برداری از سازه بر سازه اعمال شدند، این ناحیه تحت کشش قرار نگیرد و موجب ترک بتن و از دست رفتن کارایی بتن نشود. به این ترتیب، از حداکثر ظرفیت باربری بتن استفاده می شود و ابعاد و اندازه اعضا کاهش می یابد.

مزایای معماری
• ایجاد سهولت و انعطاف پذیری در طراحی پلان و نما
• امکان ایجاد دهانه های بلندتر و وجود ستون های کمتر در سازه
• کاهش ارتفاع طبقات و کل ساختمان
• امکان ایجاد کنسول های بلندتر
• افزایش فضای مفید بهره برداری
• ایجاد فضای مناسب برای تأمین پارکینگ های بیشتر
• حذف آویز تیرها و امکان استفاده از سقف کاملاً مسطح
• قابلیت استفاده در پلان های نامنظم و منحنی شکل
• امکان ایجاد بازشوهای بزرگتر در سقف
• قابلیت استفاده از ستونهای خارج از محور
• قابلیت بیشتر عبور لوله ها و ادوات تأسیساتی

مزایای سازه ای
• افزایش دوام بتن
• کاهش ابعاد فونداسیون
• کنترل ترک خوردگی در سازه
• باربری بیشتر عضو پیش تنیده
• کنترل خیز و تغییرشکل در سازه ها
• ایمنی بالاتر سقف یکپارچه بتنی در زلزله
• کاهش وزن مرده ساختمان و مصالح مصرفی
• کاهش ارتفاع تیرها و ضخامت دال های بتنی
• امکان ساخت قطعات سبک تر بتنی پیش ساخته
• کاهش ارتعاش ناشی از بارهای ضربه ای و دینامیکی
• استفاده حداکثر و بهینه از ظرفیت مصالح بتنی و کابل ها

مزایای اقتصادی
• افزایش طول عمر مفید سازه
• کاهش فوق العاده در زمان ساخت و ساز
• امکان ایجاد طبقات بیشتر تحت یک ارتفاع مجاز
• امکان احداث پروژه های تجاری با معماری خاص
• اهش هزینه تمامی آیتم های ارتفاعی نازک کاری
• کاهش قابل ملاحظه در مقدار آرماتور و بتن مصرفی
• کاهش قابل ملاحظه در زمان و هزینه نیروی انسانی
• افزایش سوددهی پروژه های ساختمانی بواسطه افزایش تعداد پارکینگ ها

روش های پیش تنیدگی
روش پیش کشیدگی: کابل های فولادی در قالب جایگذاری , کشیده و مهار می شوند سپس بتن ریزی انجام می شود که در ساخت قطعات پیش ساخته(pre cast) بکار می رود.
روش پس کشیدگی: کابل های فولادی، در قالب جایگذاری می شود. پس از بتن ریزی و گیرش کافی مقاومت بتن، کابلها کشیده و با مهار بند مهار می شوند.

- سیستم های پس کشیدگی
سیستم غیرچسبنده تک رشته: منظور از غیر چسبنده بودن، عدم تماس مستقیم فولاد کابل با بتن بواسطه پوشش پلی اتیلنی آن می باشد(تصویر1).
سیستم چسبنده مسطح چند رشته: منظور از چسبنده بودن، تماس کابل با بتن از طریق گروت ریزی در داکت که کابل در آن محصور شده است، می باشد(تصویر2).

سیستم چسبنده مدور چند رشته: این سیستم در پروژه های عظیم مانند پلها بکار می رود(تصویر3).

گروه مهندسین مشاور آرمان
+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

الزامات سقف بتنی پیش تنیده پس کشیده

-1 نظر به اینکه سیستم سقف بتنی
پیش تنیده پس کشیده عمدتاً بصورت دال> تخت کاربرد دارد، لذا بر اساس توصیه بند 5-8-3-2 آئین نامه 2800 ایران، در زمان استفاده از> سیستم دالهای تخت و ستون، ارتفاع >ساختمان به 10 متر یا حداکثر 3 طبقه محدود >می شود. در غیر اینصورت استفاده از >دیوار های برشی بتن آرمه الزامی خواهد بود.
-2 استفاده از این سیستم با توجه

به بند 1 فوق در کلیه پهنه های >لرزه خیزی ایران بلامانع است.
-3 ضوابط طراحی و اجرای سیستم سقف> بتنی پیش تنیده پس کشیده باید براساس آئین نامه
ACI 318 آئین نامه طرح و محاسبة قطعات> بتن پیش تنیده موضوع نشریه شماره 250 سازمان مدیریت و برنامه ریزی کشور که بخش الحاقی> آیین نامه بتن ایران )آبا( می باشد، انجام> شود.
. -4 رعایت حداقل ردة بتن مصرفی معادل
30
C
در این سیستم الزامی است
-5 مقاومت گسیختگی تضمین شده، انواع فولاد های پیش تنیدگی به شرح زیر باید بین 1200 تا 2200 نیوتن بر میلیمتر مربع باشد:
- سیم بدون پوشش تنش زدایی شده
- رشته هفت سیم بدون پوشش تنش

زدایی شده یا رشته هایی از آن
- میله فولادی پر مقاومت بدون پوشش
-6 محافظت فولاد های پیش تنیدگی در برابر زنگ زدگی بسیار حائز اهمیت بوده و باید کابل ها توسط دوغاب سیمان که بعد از کشیدن کابل ها به داخل غلاف ها تزریق می شود و یا مواد قیری یا گریس که روی آن می مالند از زنگ زدگی محافظت شوند.
-7 برای رسیدن به یک طرح بهینه

از لحاظ مقدار مصالح، وزن و هزینه،> باید طراحی و اجرای دال به گونه> ای انجام شود که پیشتنیدگی کامل حاصل گردد و بتوان از کل مقطع در فشار بهره جست.
-8 کنترل نیروی کشش کابلها باید توسط> جکهای کالیبره شده دقیق انجام شود.
-9 اجرای این سیستم باید توسط تیم> متخصص آموزش دیده انجام شود و در> زمان اجرا نیازمند کنترل کیفبت دقیق میباشد.
-10 تخریب این سیستم سقف به دلیل

وجود میلگردهای پیش تنیده بسیار پر خطر> بوده و باید با روش های خا ص توسط> تیم فنی آموزش دیده، صورت گیرد.
-11 توجه به مسئله افت در اعضای

پیش تنیده پس کشیده بسیار حائز اهمیت> بوده و محاسبه و پیش بینی مقدار افت ناشی از موارد زیر باید دقیقاً مورد توجه قرار گیرد:
- افت نیروی پس کشیدگی به جهت

اصطکاک بین کابل و غلاف
- افت به دلیل لغزش مهار انتهایی> و فرو رفتن گوه گیرداری در ابتدا> و انتهای کابل
- افت به جهت شل شدگی فولاد>کهولت کرنش(Relaxation)
- جمع شدگی بتن یا خزش(Creep)
- انقباض یا آب رفتگی بتن که

به علت خروج آب از بتن به >مرور زمان می باشد(Shrinkage)
- افت ناشی از تغییر شکل نسبی

الاستیک بتن
-12 استفاده از سیستم سقف دال های> تخت پیش تنیده پس کشیده، در دهانه های بلندتر از 7 متر توجیه اقتصادی دارد.
-13 در استفاده از دالهای تخت پیش> تنیده پس کشیده به لحاظ بزرگ بودن دهانه ها و وجود نیرو های ثقلی قابل ملاحظه، در نظر گرفتن تمهیدات لازم به> منظور کنترل برش سوراخ کننده (Punch) بسیار
حائز
اهمیت
میباشد.
-14 رعایت الزامات مبحث 19 مقررات ملی ساختمان،> جهت صرفه جویی در مصرف انرژی الزامی است.
-15 رعایت مبحث سوم مقررات ملی ساختمان> در خصوص حفاظت ساختمان ها در برابر حریق و همچنین الزامات نشریه شماره 444 مرکز تحقیقات> ساختمان و مسکن مربوط به مقاومت >جداره ها در مقابل حریق با در >نظر گرفتن تعداد طبقات، ابعاد ساختمان، کاربری و >وظیفه عملکردی عنصر ساختمانی ضروری است.(برگرفته از سایت مقاوم سازی ایران)
-16 صدابندی هوابرد و کوبه ای سقف> بین طبقات می بایست مطابق مبحث هجدهم مقررات ملی ساختمان تامین شود.

تهیه مقاله:مهندس عادل گودرزی

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

محاسبه دقیق افت های تاندون پیش تنیدگی در سازه های بتن پیش تنیده - 3

افت حاصل از خزش بتن
مطالعات بسیاری در زمینه افت های بلند مدت سازه های پیش تنیده صورت گرفته است. با توجه به محاسبات انجام گرفته رابطه دقیق انتگرالی (37) برای خزش پیشنهاد شده است.
رابطه (37)
با توجه به ساده سازیهای صورت گرفته برای رابطه بالا و نظر به اینکه با گذشت زمان برای یک بارگذاری خاص تنش ها ثابت بوده و مقادیر کرنش و ضریب ارتجاعی بتن تغییر می کند؛ با در نظر گرفتن شکل (3)، برای به دست آوردن روابط خزشی محاسبات زیر انجام گرفت.

شکل 3 – نمودار کرنش – زمان برای بتن تحت اثر بارهای دائمی
شکل 3 – نمودار کرنش – زمان برای بتن تحت اثر بارهای دائمی


رابطه (38) و رابطه (39)
نسبت εc/εe را با φ نشان می دهند که ضریب خزش نامیده می شود.
رابطه (40)، رابطه (41) و رابطه (42)

در روابط فوق Eci ضریب ارتجاعی بتن در زمان انتقال، Ect ضریب ارتجاعی بتن در بلند مدت، Es ضریب ارتجاعی تاندون، fc تنش موجود در بتن، fpi تنش اولیه در تاندون و m نسبت ضریب ارتجاعی فولاد به بتن می باشند.

افت حاصل از انقباض بتن و سستی تاندون ها
افت در اثر انقباض بتن و سستی تاندون ها بستگی به خصوصیات مصالح دارند.که نحوه محاسبه آنها در آئین نامه ها ذکر شده اند.
رابطه (43) و رابطه (44)

در زیر با ارائه مثالی چگونگی نمودارهای پیوسته به دست آمده از روابط فوق بیان می گردد.

تیر پس کشیده مورد بررسی دارای ابعاد و دهانه به شکل زیر بوده و تاندون آن سهمی شکل با خروج از مرکزیت منفی در تکیه گاه وسط می باشد. همچنین فرض شده که بر روی هر ستون 4 تیر واقع گردیده است. که تحت تأثیر بارگذاری HA طبق آئین نامه BS5400 قرار گرفته اند.

شکل 4 – مقطع و نمای کلی پل تحت اثر بارگذاری متحرک HA
شکل 4 – مقطع و نمای کلی پل تحت اثر بارگذاری متحرک HA


شکل (5) مقدار خروج از مرکزیت واقعی تیر را در نقاط مختلف نشان می دهد. همچنین این نمودار خروج از مرکزیت معادل تیر را که به دلیل نامعینی خارجی در اثر لنگرهای ثانویه به وجود می آید را نیز نشان می دهد (توجه گردد که برای نشان دادن کارآمدی روابط خروج از مرکزیت تاندون به شکل نا متقارن در نظر گرفته شده است).

شکل 5 – خروج از مرکزیت تاندون
شکل 5 – خروج از مرکزیت تاندون


نمودارهای مربوط به موارد گوناگون افت و اثرات آنها در اشکال ( 6) تا ( 11 ) ارائه گردیده اند.

نتیجه گیری
با توجه به اشکال حاصل از محاسبه افت ها می توان موارد زیر را مشاهده نمود.
1. با توجه به شکل (6) که مربوط به افت اصطکاکی می باشد؛ می توان دریافت که افت دارای تغییرات پیوسته ای می باشد که در نقاط تغییر انحناء منحنی دارای تغییرات وابسته به افزایش یا کاهش آن می باشد.
2. با توجه به شکل (7) برای افت الاستیک و شکل (8) برای افت خزشی می توان به تأثیرپذیری افت از تغییرات انحناء، محل اوج خروج از مرکزیت و محل تکیه گاه ها اشاره نمود.
3. با توجه به شکل (10) که مربوط به افت در اثر تو رفتگی می باشد. می توان مقدار طول مؤثر تورفتگی و پیوستگی منحنی را مشاهده نمود.
با توجه به بخش قبل و روابط حاصله برای هر یک از افت های مورد بحث، ملاحظه می گردد که افت تاندون به راحتی بر حسب توابعی مطابق با فاصله از ابتدای تاندون بیان می گردند. این امر موجب می گردد؛ که با ارائه یک الگوریتم گام به گام محاسبه افت به راحتی امکانپذیر باشد. همچنین توجه به این نکته حائز اهمیت است که در موارد مشابه برای محاسبه افت که تاکنون در روش های بهینه سازی ارائه گردیده است. معمولا از روش های عددی مانند روش سیمپسون و با تقسیم بازه به مقاطع زیاد برای بالا بردن دقت استفاده گردیده است.
در حالی که در روابط بالا می توان بدون انجام تقسیمات خاصی در هر نقطه دلخواه با هر فاصله ای و هر نسبتی مقدار دقیق افت را به دست آورد.

با توجه به نتایج حاصل از قسمت های قبل و مقایسه این روش با الگوریتم های مشابه می توان به موارد زیر اشاره نمود:
1. با استفاده از روش فوق سرعت محاسبه افت توسط نرم افزارهای کامپیوتری به دلیل عدم نیاز به تقسیم بندی بازه های محاسباتی و روابط به شکل تابع که نیاز به محاسبه انتگرال ندارند بالاتر می رود.
2. انعطاف پذیری برنامه برای محاسبه افت در هر نقطه دلخواه افزایش می یابد.
3. علت اصلی انعطاف پذیری محاسبه افت، عدم نیاز به تقسیم بندی بازه در مقایسه با روش های تقسیم نامتقارن بازه محسباتی برای بالا بردن دقت محاسبات می باشد.
4. با اتصال برنامه محاسبه افت به یک الگوریتم بهینه سازی مناسب مانند الگوریتم ژنتیک می توان کارآمدترین شکل تاندون را به دست آورد.
5. با توجه به نمودارها می توان به پیوستگی آنها پی برد؛ که یکی از مشخصات بارز این روش می باشد؛ و آن را از روش های عددی متمایز می سازد.
6. روابط مشابهی که برای افت های بلند مدت مانند رابطه (38) ارائه گردیده است دارای پیچیدگی خاصی می باشند که کار کردن با آنها بسیار مشکل و نیازمند انجام محاسبات زیادی می گردد.

شکل 6 – افت اصطکاکی
شکل 6 – افت اصطکاکی

شکل 7 – افت الاستیک
شکل 7 – افت الاستیک

شکل 8 – افت خزشی
شکل 8 – افت خزشی

شکل 9 – افت تو رفتگی
شکل 9 – افت تو رفتگی

شکل 10 – نیروی پیش تنیدگی
شکل 10 – نیروی پیش تنیدگی

شکل 11 – افت کلی
شکل 11 – افت کلی



مراجع


1- Genetic anti-optimization for reliability structural assessment of precast concrete structures Luciano Catallo
Department of Structural and Geotechnical Engineering, University of Rome ‘‘La Sapienza’’, Via Eudossiana 18, 00184 Rome, Italy Accepted 5 March 200
2- Optimal design of reinforced concrete T-sections in bending C.C. Ferreira a,∗, M.H.F.M. Barros a, A.F.M.
Barros b a Department of Civil Engineering, Faculty of Sciences and Technology, University of Coimbra,
Polo II, 3030 Coimbra, Portugal b IDMEC/Instituto Superior Te´cnico, Av. Rovisco Pais, 1000 Lisbon,
Portugal 4 February 2003
3- Optimum detailed design of reinforced concrete continuous beams using Genetic Algorithms V. Govindaraj
a,*, J.V. Ramasamy ba Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore
641 006, Tamil Nadu, India b Department of Civil Engineering, P.S.G. College of Technology, Coimbatore
641 004,accepted 9 September 2005
4- Shrinkage cracking at interior supports of continuous pre-cast pre-stressed concrete girder bridges Hyo-
Gyoung Kwak_, Young-Jae Seo Department of Ci_il Engineering, Korea Ad_anced Institute of Science and
Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701,South Korea Received 21 July 2001;
received in revised form 25 August 2001; accepted 25 October 2001
5- Comparisons and contrasts in creep behaviour G.W. Greenwood .Department of Engineering Materials,
University of Sheffield, Mappin Street, Sheffield S1 3JD, UK Received 2 March 2006; received in revised
form 1 May 2006; accepted 18 June 2006
6- Numerical analysis of time-dependent behavior ofpre-cast pre-stressed concrete girder bridges Hyo-Gyoung
Kwak_, Young-Jae Seo Department of Ci_il Engineering, Korea Ad_anced Institute of Science and
Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701,South Korea Received 21 July 2000;
received in revised form 25 August 2001; accepted 25 October 2001
7- Prediction of time-dependent effects in concrete structures using early measurement dataIn Hwan Yang
Daelim Industrial Co., 146-12, Susong-dong, Jongro-ku, Seoul 110-732, Republic of Korea Received 20
May 2006; received in revised form 21 December 2006; accepted 6 January 2007Available online 6 March
2007
8- Long-term behavior of composite girder bridges Hyo-Gyoung Kwak*, Young-Jae Seo Department of Civil
Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusung-Tong, Yusung-Ku,
Taejon 305-701 South Korea Received 13 July 1998; accepted 19 January 1999
9- Numerical integration for a creeping material Dieter Stolle Department of Civil Engineering, McMaster
University, Hamilton, Ontario L8S4L7, Canada Received 21 May 1998; received in revised form 30 July
1998; accepted 14 September 1998

این مقاله تلاشی بود از دکتر ایرج محمودزاده کنی دانشیار دانشکده مهندسی عمران دانشگاه تهران ، مهدی حیدری وند رضا قلی قشلاقی دانشجوی کارشناسی ارشد مهندسی عمران- سازه دانشگاه تهران

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

محاسبه دقیق افت های تاندون پیش تنیدگی در سازه های بتن پیش تنیده - 2

افت در اثر تغییر شکل الاستیک
با توجه به مطالعات انجام گرفته محاسبات با بررسی تغییر در نیروی پیش تنیدگی در سطح تراز تاندون انجام می شود؛ (تغییر در نیروی پیش تنیدگی در اثر تغییر شکل الاستیک با Δfp نشان داده می شود) و با توجه به یکسان بودن کرنش ها در سطح تراز تاندون رابطه (16) به دست می آید.
رابطه (16)
تنش های بوجود آمده در بتن در سطح تراز تاندون ها در اثر نیروهای پیش تنیدگی نیز با توجه به رابطه (18) حاصل می شود. (در رابطه زیر Pe مقدار نیروی پیش تنیدگی مؤثر در سطح تراز تاندون ها می باشد)
رابطه (17)
رابطه (18)
بدین ترتیب مقدار افت در اثر تغییر شکل الاستیک با توجه به رابطه زیر حاصل خواهدگردید.
رابطه (19)
ولی در مورد حالت پس کشیدگی تاندون ها باید در نظر گرفت که نحوه کشش تاندون ها به چه شکل خواهد بود؛ اگر کل تاندون ها در یک مرحله کشیده شود؛ با توجه به اینکه جک های کششی، تاندون ها را تا رسیدن به کشش مورد نظر می کشند، هیچگونه افتی در تاندون ها در اثر تغییر شکل الاستیک به وجود نخواهد آمد؛ البته باید در این مورد توجه گردد که اثر وزن تاندون نیز به حساب آمده است؛ ولی اگر تاندون ها در چند مرحله کشیده شوند؛ باید اثرات هر بار کشش تاندون ها در نظر گرفته شود؛ و افت ناشی از کشش تاندون ها در مراحل بعدی منظور گردد؛ اگر فرض شود که تاندون ها در n مرحله کشیده می شوند؛ و در هر مرحله سطح مقطع تاندون ها برابر می باشد؛ روابط زیر برای fco (تنش بتن در تراز تاندون) به دست می آید.
رابطه (20)
با توجه به توضیحات بالا مقدار تغییرات تنش در مرحله دوم و سوم کشش با توجه به روابط زیر حاصل شد.
رابطه (21)، رابطه (22) ، رابطه (23)، رابطه (24)، رابطه (25)، رابطه (26)، رابطه (27)، رابطه (28)، رابطه (29) و رابطه (30)

با ادامه فرآیند بالا برای n مرحله کشش رابطه زیر برای تنش مؤثر بتن در سطح تراز تاندون حاصل شد.
رابطه (31)

افت در اثر تورفتگی در گیره
در مواردی که گیره های به کار گرفته شده صلبیت کافی را برای تاندون ها بوجود نیاورند؛ تاندون ها در داخل گیره ها می لغزند؛ که مقدار این لغزش بستگی به نوع گیره و نحوه اتصال آن دارد؛ مقدار این تورفتگی معمولاً توسط جداولی بوسیله کارخانجات سازنده ارائه می گردد؛ در این مورد با فرض تورفتگی در گیره برابر با δad محاسبات انجام شده؛ و تغییر تنش در اثر تورفتگی با استفاده از روابط زیر به دست آمد.
رابطه (32)
رابطه (33) و رابطه (34)

در روابط بالا افت اصطکاکی با استفاده از رابطه (15) محاسبه شده در قبل در نظر گرفته شده است.
رابطه (35)
با توجه به اینکه تنها مجهول موجود در رابطه فوق مقدار xA بود؛ با استفاده از حل رابطه فوق طول مؤثر در تورفتگی به دست آمد؛ با در دست داشتن مقدار طول مؤثر در تو رفتگی تغییرات نیروی پیش تنیدگی در تاندون نیز به دست آمد.
رابطه (36)
ادامه دارد...
+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

محاسبه دقیق افت های تاندون پیش تنیدگی در سازه های بتن پیش تنیده - 1

خلاصه
در این مقاله یک روش دقیق برای محاسبه افت نیرو در تاندون های اعضای بتنی پیش تنیده ارائه شده است. این روش با کاهش خطای محاسباتی موجب افزایش دقت طراحی می شود. از محاسن این روش به دست آمدن یک تابع برحسب طول تاندون می باشد. با ارائه یک برنامه کامپیوتری برحسب این تابع و ورود داده هایی از قبیل نوع سازه بتنی (پیش کشیده یا پس کشیده)، نحوه قرارگیری تاندون (مستقیم یا سهموی)، مشخصات مربوط به افت (از قبیل ضریب اصطکاک، ضریب اعوجاج، مقدار تورفتگی در گیره، مقدار خزش مخصوص بتن، ضریب انقباض بتن، ضریب سستی تاندون و ...)، و مشخصات مقطع، مقدار افت در حین انتقال و در بلند مدت سازه به دست می آید.

مقدمه
با توجه به پیشرفت روز افزون کاربرد اعضاء سازه های بتن پیش تنیده در جهان و پیشرفت تئوریهای مربوط به این نوع سازه ها در مهندسی عمران؛ توجه بیش از پیش به این گونه سازه ها اجتناب ناپذیر است. در کشور ما نیز کاربرد سازه های ساخته شده از بتن پیش تنیده در پل ها و دال های کف ساختمان ها و... چندی است که مورد توجه قرار گرفته است. با توجه به پیشرفت روز افزون تکنولوژی بکارگیری سازه های بتن پیش تنیده؛ و همچنین توجه به امکانات به وجود آمده در زمینه تحلیل و طراحی چنین سازه هایی توسط نرم افزارهای کامپیوتری، توجه بیش از حد به تلفیق این تئوری ها با برنامه های کامپیوتری حائز اهمیت می باشد.
در حال حاضر در زمینه سازه های بتن پیش تنیده، با توجه به امکانات داخلی در تولید بعضی اجزای چنین سازه هایی و پیشرفت رو به توسعه در این زمینه و همچنین وارداتی بودن برخی دیگر از اجزای تشکیل دهنده اینگونه سازه ها، اعم از گیره ها و جک های هیدرولیکی کشنده، طراحی بهینه اینگونه تاندون ها، از اهمیت دو چندانی برخوردار شده است. آنچنانکه مطالعات بسیاری در زمینه بهینه سازی در جهان صورت پذیرفته است.
با توجه به توضیحات اشاره شده در بالا انجام مطالعاتی در این زمینه که هدف از آن کاهش هزینه و صرفه جویی در وقت می باشد، ضروری است.
از الزامات طراحی بهینه در سازه های بتن پیش تنیده محاسبه دقیق پارامترهای گوناگون طراحی می باشد؛ یکی از این موارد، محاسبه مقدار دقیق افت در مقاطع گوناگونی از سازه بوده، که در این مقاله به آن پرداخته شده است. هدف ما از انجام این محاسبات به دست آوردن روشی برای محاسبه دقیق افت های نیروی پیش تنیدگی و ساماندهی آن به شکل یک الگوریتم مرحله به مرحله برای محاسبه افت ها می باشد. ابتدا مقادیر افت ها را برای حالت های خاص در نظر می گیریم؛ سپس با تلفیق این روابط با توجه به ترتیب اثر آنها یک فرآیند مرحله ای برای محاسبه افت ها ارائه می گردد.

تئوریهای مربوط به محاسبه افت نیروی پیش تنیدگی
افت های موجود در سازه بتن پیش تنیده در اثر عوامل متعددی بوجود می آیند؛ برخی از این افت ها در حین انتقال یا بلافاصله بعد از انتقال نیروی پیش تنیدگی رخ می دهند (از این قبیل افت ها می توان به افت اصطکاکی به وجود آمده در تاندون های پس کشیده، افت حاصل از تغییر شکل الاستیک در اثر اعمال نیروی پیش تنیدگی، افت حاصل از تورفتگی تاندون در گیره و...اشاره نمود). برخی دیگر نیز در اثر گذشت زمان و به دلیل خاصیت مصالح به وجود می آیند (از این قبیل افت ها می توان به افت حاصل از جمع شدگی بتن، افت حاصل از خزش بتن، افت حاصل از سستی تاندون پیش تنیدگی و... اشاره نمود).

محاسبه دقیق افت اصطکاکی ناشی از انحناء
برای محاسبه افت اصطکاکی، یک المان دارای انحنای متغییر در طول مانند شکل (1) در نظر گرفته می شود؛ و با بکارگیری روابط تعادل مقدار اصطکاک اعمال شده بر روی تاندون با توجه به محاسبات زیر به دست می آید. (توجه گردد که معادلات تعادل نیروها در دو جهت شعاعی و عمود بر آن در نظر گرفته شده است.)

شکل 1 – المان بریده شده از تاندون برای محاسبه افت
شکل 1 – المان بریده شده از تاندون برای محاسبه افت


رابطه (1)
معادله (1) که در آن μ ضریب اصطکاک و T نیروی کششی می باشد؛ رابطه اصلی برای محاسبه افت نیروی پیش تنیدگی در اثر اصطکاک می باشد. همچنین برای افزایش دقت محاسبات مقادیر واقعی انحناء تاندون و طول منحنی با توجه به روابط (2) و (3) در محاسبات منظور شد.
رابطه (2)
رابطه (3)
با انتگرال گیری از رابطه (1) ، با توجه به روابط (2) و (3) و همچنین اعمال شرایط اولیه مقادیر دقیق نیروی پیش تنیدگی پس از افت اصطکاکی ناشی از انحناء (به فاصله x از ابتدای تاندون)، با توجه به رابطه (4) حاصل شد.
رابطه (4)
با در نظر گرفتن تاندون سهموی ( y = A.x2 + B.x +C ) مانند شکل (2)؛ رابطه های مربوط به شکل تاندون به دست می آیند و رابطه (4) تبدیل به رابطه (8) می گردد.

شکل 2 – خروج از مرکزیت تاندون
شکل 2 – خروج از مرکزیت تاندون


رابطه (5)
رابطه (6)
رابطه (7)
که در حالت ایده آل EF = EE و X0=L/2 می باشد.
رابطه (8)
رابطه (9)
در روابط فوق EF و EM و EE به ترتیب خروج از مرکزیت تاندون در ابتدای تیر، وسط دهانه و انتهای تیر می باشند.

افت اصطکاکی ناشی از اعوجاج
نیروی پیش تنیدگی پس از افت اصطکاکی اعوجاجی نیز (با فرض ثابت بودن مقدار μ/ρ(x) برای هر متر طول)، با توجه به رابطه (11) به دست می آید.
رابطه (10)
رابطه (11)
با در نظر گرفتن تاندون به شکل سهموی ؛ مقدار زیر برای رابطه (11) به دست آمد.
رابطه (12)
که در آن تابع G(x) به صورت زیر محاسبه می شود؛
رابطه (13)
البته باید توجه گردد که در سازه های بتنی پیش تنیده، که تاندون ها به شکل پس کشیده می باشند؛ افت های اصطکاکی ناشی از انحناء و اعوجاج با هم به وجود می آیند و باید با هم در نظر گرفته شوند؛ به همین منظور با توجه به توضیحات و روابط به دست آمده در بالا کل اثرات حاصل از افت اصطکاکی با استفاده از روابط زیر در نظر گرفته می شود.(در روابط زیر K عبارت است از ضریب اعوجاج)
رابطه (14)
رابطه (15)

ادامه دارد...

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

ضوابط والزامات سقف بتني پيش تنيده پس كشيده

۱- نظر به اينكه سيستم سقف بتني پيش تنيده پس كشيده عمدتاً بصورت دال تخت كاربرد دارد، لذا بر اساس توصيه بند 5-8-3-2  آئين نامه 2800 ايران، در زمان استفاده از سيستم دالهاي تخت و ستون، ارتفاع ساختمان به 10 متر يا حداكثر 3 طبقه محدود مي شود. در غير اينصورت استفاده از ديوار هاي برشي بتن آرمه الزامي خواهد بود.

۲- استفاده از اين سيستم با توجه به بند 1 فوق در كليه پهنه هاي لرزه خيزي ايران بلامانع است.

۳- ضوابط طراحي و اجراي سيستم سقف بتني پيش تنيده پس كشيده بايد براساس آئين نامه

ACI 318 آئين نامه طرح و محاسبة قطعات بتن پيش تنيده موضوع نشريه شماره 250 سازمان مديريت و برنامه ريزي كشور كه بخش الحاقي آيين نامه بتن ايران )آبا( مي باشد، انجام شود.

. ۴-رعايت حداقل ردة بتن مصرفي معادل 30 C در اين سيستم الزامي است

۵- مقاومت گسيختگي تضمين شده، انواع فولاد هاي پيش تنيدگي به شرح زير بايد بين 1200 تا 2200 نيوتن بر ميليمتر مربع باشد:

- سيم بدون پوشش تنش زدايي شده

- رشته هفت سيم بدون پوشش تنش زدايي شده يا رشته هايي از آن

- ميله فولادي پر مقاومت بدون پوشش

۶-محافظت فولاد هاي پيش تنيدگي در برابر زنگ زدگي بسيار حائز اهميت بوده و بايد كابل ها توسط دوغاب سيمان كه بعد از كشيدن كابل ها به داخل غلاف ها تزريق مي شود و يا مواد قيري يا گريس كه روي آن مي مالند از زنگ زدگي محافظت شوند.

۷- براي رسيدن به يك طرح بهينه از لحاظ مقدار مصالح، وزن و هزينه، بايد طراحي و اجراي دال به گونه اي انجام شود كه پيشتنيدگي كامل حاصل گردد و بتوان از كل مقطع در فشار بهره جست.

۸-كنترل نيروي كشش كابلها بايد توسط جكهاي كاليبره شده دقيق انجام شود.

۹-اجراي اين سيستم بايد توسط تيم متخصص آموزش ديده انجام شود و در زمان اجرا نيازمند كنترل كيفبت دقيق ميباشد.

۱۰- تخريب اين سيستم سقف به دليل وجود ميلگردهاي پيش تنيده بسيار پر خطر بوده و بايد با روش هاي خا ص توسط تيم فني آموزش ديده، صورت گيرد.

۱۱-توجه به مسئله افت در اعضاي پيش تنيده پس كشيده بسيار حائز اهميت بوده و محاسبه و پيش بيني مقدار افت ناشي از موارد زير بايد دقيقاً مورد توجه قرار گيرد:

- افت نيروي پس كشيدگي به جهت اصطكاك بين كابل و غلاف

- افت به دليل لغزش مهار انتهايي و فرو رفتن گوه گيرداري در ابتدا و انتهاي كابل

- افت به جهت شل شدگي فولاد – كهولت كرنش(Relaxation)

- جمع شدگي بتن يا خزش(Creep)

- انقباض يا آب رفتگي بتن كه به علت خروج آب از بتن به مرور زمان مي باشد(Shrinkage)

- افت ناشي از تغيير شكل نسبي الاستيك بتن

۱۲- استفاده از سيستم سقف دال هاي تخت پيش تنيده پس كشيده، در دهانه هاي بلندتر از 7 متر توجيه اقتصادي دارد.

۱۳-در استفاده از دالهاي تخت پيش تنيده پس كشيده به لحاظ بزرگ بودن دهانه ها و وجود نيرو هاي ثقلي قابل ملاحظه، در نظر گرفتن تمهيدات لازم به منظور كنترل برش سوراخ كننده (Punch) بسيار حائز اهميت ميباشد.

۱۴-رعايت الزامات مبحث 19 مقررات ملي ساختمان، جهت صرفه جويي در مصرف انرژي الزامي است.

۱۵- رعايت مبحث سوم مقررات ملي ساختمان در خصوص حفاظت ساختمان ها در برابر حريق و همچنين الزامات نشريه شماره 444 مركز تحقيقات ساختمان و مسكن مربوط به مقاومت جداره ها در مقابل حريق با در نظر گرفتن تعداد طبقات، ابعاد ساختمان، كاربري و وظيفه عملكردي عنصر ساختماني ضروري است.

۱۶- صدابندي هوابرد و كوبه اي سقف بين طبقات مي بايست مطابق مبحث هجدهم مقررات ملي ساختمان تامين شود.

 

 

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  | 

نکاتی پیرامون بتن پیش تنیده

نکاتی در مورد بتن پیش تنیده و آرمه و سقفهای بتنی
روش سقف سازی تیرچه و بلوک ترکیبی است از دو روش پیش ساخته و بتن درجا که در این روش مزایای پیش ساختگی همانند سرعت ساخت و هزینه کم قالب بندی و آرماتوربندی و کیفیت خوب بتن ساخته شده در کارخانه با جنبه های مثبت بتن ریزی درجا همانند عدم نیاز به جرثقیل به خوبی تلفیق شده است.
از مزایای دیگر مصرف کمتر فولاد در این نوع سقف در مقایسه با سقف طاق ضربی - تیرآهن از دلایل عمده توسعه این روش در سالهای اخیر در ایران است.

استفاده از بتن پيش تنيده در ايجاد پلها و ساختمان ها و تمام سازه ها از حدود 50 سال پيش تا کنون در سطح وسيع متداول شده است. با توجه به عيوب مختلف فولاد( نا پايداري الاستيک نيمرخ هاي فلزي، خوردگي و زنگ زدگي، فزوني بهاي توليد...) امروزه اغلب پلهاي بزرگ از بتن پيش تنيده ساخته مي شوند، اما برخلاف حالت بتن مسلح مصالح مصرفي جهت اين پلها بايد از کيفيت بسيار خوبي برخوردار باشند .
در بتن پيش تنيده نيز مانند بتن مسلح از بتن که داراي مقاومت بسيار خوب فشاري است و فولاد استفاد مي شود اما بتن مسلح ترکيبي از بتن و فولاد است که در آن بتن در مقابل فشار و فولاد در مقابل کشش مقاومت مي کند در حالي که در بتن پيش تنيده با انجام يک عمل مکانيکي بتن به تنهايي تنشهاي کششي و فشاري ايجاد شده را تحمل مي نمايد. براي طرح محاسبه قطعات پيش تنيده روش و ترتيب اجراي سازه بايد دقيقا مشخص باشد زيرا مقادير تنش هاي ايجاد شده در قطعات در حين اجراي سازه بسيار مهم و گاهي تعيين کننده مي باشند. همچنين برخلاف حالت بتن مسلح بعد از بررسي پايداري سازه تغيير شکلهاي کوتاه مدت و دراز مدت بتن و فولاد نيز بايد به دقت مورد مطالعه قرار گيرند. مصالح مصرفي در سازه هاي بتن پيش تنيده بايد از کيفيت عالي برخوردار بوده و با دقت نيز مورد استفاده قرار گيرند با توجه به اين که بتن در سن کم که مقاومت نسبتاً ضعيفي داشته و قابل تغيير شکل نيز مي باشد تحت فشار فوق العاده زيادي قرار مي گيرد بايد کيفيت آن به مراتب از کيفيت بتن مصرفي در سازه هاي بتن مسلح بالاتر باشد همچنين فولاد نيز با توجه به اينکه تحت کشش فوق العاده زيادي قرار مي گيرد (100تا 180 کيلو گرم بر ميلي متر مربع ) بايد مقاومت مناسبي داشته باشد بنابر اين در زمان اجراي سازه مصالح مصرفي در بتن پيش تنيده تحت تنش هاي فوق العاده مهمي قرار مي گيرند که عمل تنيدن آزمايش مناسبي براي کنترل کيفيت مصالح به کار رفته است.



بخش اول : نکاتی در مورد بتن پیش تنیده و آرمه و سقفهای بتنی

ضعف عمده بتن پایین بودن مقاومت کششی در آن میباشد که حدود 1/10 تا 1/20 مقاومت فشاری آن است و به علت وجود این ضعف جز در موارد خاص همانند شالوده های حجیم و دیواره های حایل وزنی , بتن به تنهایی قابل استفاده نمی باشد.
در قطعات خمشی صفحات پایین تر از صفحه خنثی , کشیده شده و صفحات بالاتر فشرده میشوند . اگر در ساخت این قطعات تنها از بتن استفاده شود توان باربری بسیار کمی خواهند داشت زیرا توان باربری آنها با تاب کششی بسیار ناچیز بتن محدود خواهد شد در صورتی که مقدار زیادی از این تاب فشاری بتن بدون استفتده می ماند.

برای رفع این ضعف بتن ( کمبود تاب کششی ) به دو روش عمل میشود:
1 - مسلح کردن بتن برای تحمل تنشهای کششی.
2 - ایجاد پیش تنیدگی در بتن برای جبران تنشهای کششی که در مراحل اجرا و بهره برداری در آن ایجاد خواهد شد.

در هر دو روش از فولاد که چسبندگی خوبی با بتن دارد و ضریب انبساط حرارتی آن با ضریب انبساط حرارتی بتن تقریبا برابر است استفاده میشود.
قابل ذکر است که فرق اساسی بتن آرمه و بتن پیش تنیده در آن است که در بتن آرمه فولاد و بتن هنگام ساخت بطور ساده کنار هم قرار میگیرند و تنش هر دو در منطقه کششی مقطع , از نوع کششی است. در حالیکه در بتن پیش تنیده یک نوع اتحاد فعال بین آنها وجود دارد به این شکل که ابتدا فولاد توسط جکهای هیدرولیکی بسیار قوی کشیده میشود و بعد از ایجاد پیوستگی کافی بین فولاد و بتن , جکها به آرامی رها کشته و بتن را تحت تنش فشاری قرار میدهد که در مرحله بهره برداری تنش فولاد از نوع کششی و تنش بتن از نوع فشاری است.
در بتن آرمه به علت افزایش طول فولاد در مرحله بهره برداری در منطقه کششی بتن ترکهایی ایجاد میشود و با افزایش تنش کششی فولاد عرض ترکها زیادتر شده و در صورتیکه عرض ترکها محدود نشوند این امر روی پایایی سازه اثر زیان بخشی خواهد داشت. برای این کار مقدار تغییر طول نسبی فولاد محدود شود و چون اساس کشسانی فولاد برای انواع مختلف آن دارای مقدار ثابتی است لذا با محدود کردن تنش فولاد عرض ترکها به مقادیر پیش بینی شده ای محدود خواهد شد. به همین دلیل است که در آیین نامه های اجرایی استفاده از فولادهایی که دارای حد کشسانی بالایی ( با تنش تسلیم بیشتر از 5000 کیلوگرم بر سانتیمتر مربع )هستند مجاز نمی باشد.
برای ایجاد پیش تنیدگی در بتن از فولادهای مورد استفاده در بتن مسلح نمی توان استفاده کرد چراکه حدود 1800 تا 2500 کیلوگرم بر سانتیمتر مربع از تنش کشش اولیه فولاد در اثر خزش و کوتاه شدن کشسانی بتن و همچنین جمع شدگی آن در اثر خشک شدن و وادادگی فولاد و دیگر عوامل حذف و تلف میشود و حتی در صورت استفاده از مقاومترین نوع فولاد برای مسلح کردن بتن معمولی که تنش مجاز آن حدود 2800 کیلوگرم بر سانتیمتر مربع است تقریبا کل نیروی کششی اولیه فولاد در اثر افتهای ذکر شده تلف خواهد شد. به این دلیل در بتن پیش تنیده برای ایجاد پیش تنیدگی از فولاد با مقاومت بسیار بالا استفاده میشود تا پس از تلف شدن مقدار اولیه تنش مقدار زیادی از آن باقی بماند . بطور معمول برای تولید تیرچه پیش تنیده ار فولاد با مقاومت بسیار بالا به قطر 5 میلیمتر و دارای مقاومت 17500 تا 19000 کیلوگرم بر سانتیمتر مربع استفاده میشود.

یکی از قسمتهای اصلی انواع ساختمانها سقفهای بتنی هستند که نقش اساسی آنها انتقال نیروهای قائم و افقی ناشی از وزن مرده سقف و سربارها و نیروهای حاصل از زلزله و باد به تیرها و ستونها و دیوارهای باربر است. همچنین با توجه به اینکه سقفها بخش نسبتا زیادی از قیمت تمام شده ساختمانها را تشکیل میدهند طراحان روشهای مختلفی را برای اقتصادی تر کردن ان و صرفه جویی در فولد و بتن و جلوگیری از قالب بندی بوجود آورده اند از جمله تیرچه و بلوک.
برای صرفه جویی در مصرف بتن و سبکتر کردن وزن سقف قسمتی ار مقطع سقف که در منطقه کششی قرار میگیرد حذف شده و فقط آن مقدار از سطح مقطع بتن که برای جاگذاری آرماتورها ی عرضی و کششی لازم است باقی گذاشته میشود. این روش برای کاهش وزن مرده سقف و ساختمان دارای اهمیت خاصی است. فاصله محلهای باقیمانده به حد کافی نزدیک به هم انتخاب میشوند تا مناطق فشاری و کششی مقطع بتنی سقف بطور یکپارچه عمل کند و سقف حالت اولیه خودش رو از دست ندهد. این طرح باعث ایجاد طرح دالهای مجوف , با پشت بند , لانه زنبوری و ... شده است.

+ نوشته شده در  ساعت   توسط سیدفرشیدغزنینی هاشمی  |